Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Molecules ; 24(10)2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31100965

RESUMO

The growing demand for whey protein supplements has made them the target of adulteration with cheap substances. Therefore, Raman spectroscopy in tandem with chemometrics was proposed to simultaneously detect and quantify three common adulterants (creatine, l-glutamine and taurine) in whey protein concentrate (WPC) powder. Soft independent modeling class analogy (SIMCA) and partial least squares discriminant analysis (PLS-DA) models were built based on two spectral regions (400-1800 cm-1 and 500-1100 cm-1) to classify different types of adulterated samples. The most effective was the SIMCA model in 500-1100 cm-1 with an accuracy of 96.9% and an error rate of 5%. Partial least squares regression (PLSR) models for each adulterant were developed using two different Raman spectral ranges (400-1800 cm-1 and selected specific region) and data pretreatment methods. The determination coefficients (R2) of all models were higher than 0.96. PLSR models based on typical Raman regions (500-1100 cm-1 for creatine and taurine, the combination of range 800-1000 cm-1 and 1300-1500 cm-1 for glutamine) were superior to models in the full spectrum. The lowest root mean squared error of prediction (RMSEP) was 0.21%, 0.33%, 0.42% for creatine, taurine and glutamine, and the corresponding limit of detection (LOD) values for them were 0.53%, 0.71% and 1.13%, respectively. This proves that Raman spectroscopy with the help of multivariate approaches is a powerful method to detect adulterants in WPC.


Assuntos
Suplementos Nutricionais/análise , Contaminação de Alimentos/análise , Análise Multivariada , Análise Espectral Raman , Proteínas do Soro do Leite/química , Algoritmos , Modelos Teóricos
2.
Molecules ; 24(8)2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30999565

RESUMO

Raman spectra of human skin obtained by laser excitation have been used to non-invasively detect blood glucose. In previous reports, however, Raman spectra thus obtained were mainly derived from the epidermis and interstitial fluid as a result of the shallow penetration depth of lasers in skin. The physiological process by which glucose in microvessels penetrates into the interstitial fluid introduces a time delay, which inevitably introduces errors in transcutaneous measurements of blood glucose. We focused the laser directly on the microvessels in the superficial layer of the human nailfold, and acquired Raman spectra with multiple characteristic peaks of blood, which indicated that the spectra obtained predominantly originated from blood. Incorporating a multivariate approach combining principal component analysis (PCA) and back propagation artificial neural network (BP-ANN), we performed noninvasive blood glucose measurements on 12 randomly selected volunteers, respectively. The mean prediction performance of the 12 volunteers was obtained as an RMSEP of 0.45 mmol/L and R2 of 0.95. It was no time lag between the predicted blood glucose and the actual blood glucose in the oral glucose tolerance test (OGTT). We also applied the procedure to data from all 12 volunteers regarded as one set, and the total predicted performance was obtained with an RMSEP of 0.27 mmol/L and an R2 of 0.98, which is better than that of the individual model for each volunteer. This suggested that anatomical differences between volunteer fingernails do not reduce the prediction accuracy and 100% of the predicted glucose concentrations fall within Region A and B of the Clarke error grid, allowing acceptable predictions in a clinically relevant range. The Raman spectroscopy detection of blood glucose from microvessels is of great significance of non-invasive blood glucose detection of Raman spectroscopy. This innovative method may also facilitate non-invasive detection of other blood components.


Assuntos
Glicemia/análise , Lasers , Microvasos/metabolismo , Pele , Análise Espectral Raman/métodos , Adulto , Glicemia/metabolismo , Feminino , Humanos , Masculino , Redes Neurais de Computação , Análise de Componente Principal , Pele/irrigação sanguínea , Pele/metabolismo
3.
Rev. bras. farmacogn ; 28(2): 235-238, Mar.-Apr. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1042261

RESUMO

ABSTRACT Twelve known compounds, including eight alkaloids, three lignans and one gossypol derivative, were isolated from the branches of Polyalthia rumphii (Blume ex Hensch.) Merr., Annonaceae. The chemical structures were determined by spectroscopic methods and comparison with literature data. All the isolates were evaluated the cytotoxicity against three human cancer cell lines: Hela, MCF-7 and A549, the results showed that partial of isolates displayed weak cytotoxicities with the IC50 values ranging from 25 to 40 µg/ml.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...